3.230 \(\int \frac {\csc (a+b x)}{(d \cos (a+b x))^{7/2}} \, dx\)

Optimal. Leaf size=100 \[ \frac {\tan ^{-1}\left (\frac {\sqrt {d \cos (a+b x)}}{\sqrt {d}}\right )}{b d^{7/2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {d \cos (a+b x)}}{\sqrt {d}}\right )}{b d^{7/2}}+\frac {2}{b d^3 \sqrt {d \cos (a+b x)}}+\frac {2}{5 b d (d \cos (a+b x))^{5/2}} \]

[Out]

arctan((d*cos(b*x+a))^(1/2)/d^(1/2))/b/d^(7/2)-arctanh((d*cos(b*x+a))^(1/2)/d^(1/2))/b/d^(7/2)+2/5/b/d/(d*cos(
b*x+a))^(5/2)+2/b/d^3/(d*cos(b*x+a))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 100, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {2565, 325, 329, 298, 203, 206} \[ \frac {2}{b d^3 \sqrt {d \cos (a+b x)}}+\frac {\tan ^{-1}\left (\frac {\sqrt {d \cos (a+b x)}}{\sqrt {d}}\right )}{b d^{7/2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {d \cos (a+b x)}}{\sqrt {d}}\right )}{b d^{7/2}}+\frac {2}{5 b d (d \cos (a+b x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[Csc[a + b*x]/(d*Cos[a + b*x])^(7/2),x]

[Out]

ArcTan[Sqrt[d*Cos[a + b*x]]/Sqrt[d]]/(b*d^(7/2)) - ArcTanh[Sqrt[d*Cos[a + b*x]]/Sqrt[d]]/(b*d^(7/2)) + 2/(5*b*
d*(d*Cos[a + b*x])^(5/2)) + 2/(b*d^3*Sqrt[d*Cos[a + b*x]])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2565

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> -Dist[(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
 &&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rubi steps

\begin {align*} \int \frac {\csc (a+b x)}{(d \cos (a+b x))^{7/2}} \, dx &=-\frac {\operatorname {Subst}\left (\int \frac {1}{x^{7/2} \left (1-\frac {x^2}{d^2}\right )} \, dx,x,d \cos (a+b x)\right )}{b d}\\ &=\frac {2}{5 b d (d \cos (a+b x))^{5/2}}-\frac {\operatorname {Subst}\left (\int \frac {1}{x^{3/2} \left (1-\frac {x^2}{d^2}\right )} \, dx,x,d \cos (a+b x)\right )}{b d^3}\\ &=\frac {2}{5 b d (d \cos (a+b x))^{5/2}}+\frac {2}{b d^3 \sqrt {d \cos (a+b x)}}-\frac {\operatorname {Subst}\left (\int \frac {\sqrt {x}}{1-\frac {x^2}{d^2}} \, dx,x,d \cos (a+b x)\right )}{b d^5}\\ &=\frac {2}{5 b d (d \cos (a+b x))^{5/2}}+\frac {2}{b d^3 \sqrt {d \cos (a+b x)}}-\frac {2 \operatorname {Subst}\left (\int \frac {x^2}{1-\frac {x^4}{d^2}} \, dx,x,\sqrt {d \cos (a+b x)}\right )}{b d^5}\\ &=\frac {2}{5 b d (d \cos (a+b x))^{5/2}}+\frac {2}{b d^3 \sqrt {d \cos (a+b x)}}-\frac {\operatorname {Subst}\left (\int \frac {1}{d-x^2} \, dx,x,\sqrt {d \cos (a+b x)}\right )}{b d^3}+\frac {\operatorname {Subst}\left (\int \frac {1}{d+x^2} \, dx,x,\sqrt {d \cos (a+b x)}\right )}{b d^3}\\ &=\frac {\tan ^{-1}\left (\frac {\sqrt {d \cos (a+b x)}}{\sqrt {d}}\right )}{b d^{7/2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {d \cos (a+b x)}}{\sqrt {d}}\right )}{b d^{7/2}}+\frac {2}{5 b d (d \cos (a+b x))^{5/2}}+\frac {2}{b d^3 \sqrt {d \cos (a+b x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.06, size = 38, normalized size = 0.38 \[ \frac {2 \, _2F_1\left (-\frac {5}{4},1;-\frac {1}{4};\cos ^2(a+b x)\right )}{5 b d (d \cos (a+b x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[a + b*x]/(d*Cos[a + b*x])^(7/2),x]

[Out]

(2*Hypergeometric2F1[-5/4, 1, -1/4, Cos[a + b*x]^2])/(5*b*d*(d*Cos[a + b*x])^(5/2))

________________________________________________________________________________________

fricas [B]  time = 0.50, size = 342, normalized size = 3.42 \[ \left [\frac {10 \, \sqrt {-d} \arctan \left (\frac {\sqrt {d \cos \left (b x + a\right )} \sqrt {-d} {\left (\cos \left (b x + a\right ) + 1\right )}}{2 \, d \cos \left (b x + a\right )}\right ) \cos \left (b x + a\right )^{3} - 5 \, \sqrt {-d} \cos \left (b x + a\right )^{3} \log \left (\frac {d \cos \left (b x + a\right )^{2} - 4 \, \sqrt {d \cos \left (b x + a\right )} \sqrt {-d} {\left (\cos \left (b x + a\right ) - 1\right )} - 6 \, d \cos \left (b x + a\right ) + d}{\cos \left (b x + a\right )^{2} + 2 \, \cos \left (b x + a\right ) + 1}\right ) + 8 \, \sqrt {d \cos \left (b x + a\right )} {\left (5 \, \cos \left (b x + a\right )^{2} + 1\right )}}{20 \, b d^{4} \cos \left (b x + a\right )^{3}}, \frac {10 \, \sqrt {d} \arctan \left (\frac {\sqrt {d \cos \left (b x + a\right )} {\left (\cos \left (b x + a\right ) - 1\right )}}{2 \, \sqrt {d} \cos \left (b x + a\right )}\right ) \cos \left (b x + a\right )^{3} + 5 \, \sqrt {d} \cos \left (b x + a\right )^{3} \log \left (\frac {d \cos \left (b x + a\right )^{2} - 4 \, \sqrt {d \cos \left (b x + a\right )} \sqrt {d} {\left (\cos \left (b x + a\right ) + 1\right )} + 6 \, d \cos \left (b x + a\right ) + d}{\cos \left (b x + a\right )^{2} - 2 \, \cos \left (b x + a\right ) + 1}\right ) + 8 \, \sqrt {d \cos \left (b x + a\right )} {\left (5 \, \cos \left (b x + a\right )^{2} + 1\right )}}{20 \, b d^{4} \cos \left (b x + a\right )^{3}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)/(d*cos(b*x+a))^(7/2),x, algorithm="fricas")

[Out]

[1/20*(10*sqrt(-d)*arctan(1/2*sqrt(d*cos(b*x + a))*sqrt(-d)*(cos(b*x + a) + 1)/(d*cos(b*x + a)))*cos(b*x + a)^
3 - 5*sqrt(-d)*cos(b*x + a)^3*log((d*cos(b*x + a)^2 - 4*sqrt(d*cos(b*x + a))*sqrt(-d)*(cos(b*x + a) - 1) - 6*d
*cos(b*x + a) + d)/(cos(b*x + a)^2 + 2*cos(b*x + a) + 1)) + 8*sqrt(d*cos(b*x + a))*(5*cos(b*x + a)^2 + 1))/(b*
d^4*cos(b*x + a)^3), 1/20*(10*sqrt(d)*arctan(1/2*sqrt(d*cos(b*x + a))*(cos(b*x + a) - 1)/(sqrt(d)*cos(b*x + a)
))*cos(b*x + a)^3 + 5*sqrt(d)*cos(b*x + a)^3*log((d*cos(b*x + a)^2 - 4*sqrt(d*cos(b*x + a))*sqrt(d)*(cos(b*x +
 a) + 1) + 6*d*cos(b*x + a) + d)/(cos(b*x + a)^2 - 2*cos(b*x + a) + 1)) + 8*sqrt(d*cos(b*x + a))*(5*cos(b*x +
a)^2 + 1))/(b*d^4*cos(b*x + a)^3)]

________________________________________________________________________________________

giac [B]  time = 1.46, size = 341, normalized size = 3.41 \[ \frac {\frac {10 \, \arctan \left (-\frac {\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}}{\sqrt {-d}}\right )}{\sqrt {-d}} + \frac {5 \, \log \left ({\left | -\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} + \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d} \right |}\right )}{\sqrt {-d}} - \frac {16 \, {\left (5 \, {\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}\right )}^{4} - 10 \, {\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}\right )}^{3} \sqrt {-d} - 20 \, {\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}\right )}^{2} d + 10 \, {\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d}\right )} \sqrt {-d} d + 3 \, d^{2}\right )}}{{\left (\sqrt {-d} \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{2} - \sqrt {-d \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, a\right )^{4} + d} - \sqrt {-d}\right )}^{5}}}{10 \, b d^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)/(d*cos(b*x+a))^(7/2),x, algorithm="giac")

[Out]

1/10*(10*arctan(-(sqrt(-d)*tan(1/2*b*x + 1/2*a)^2 - sqrt(-d*tan(1/2*b*x + 1/2*a)^4 + d))/sqrt(-d))/sqrt(-d) +
5*log(abs(-sqrt(-d)*tan(1/2*b*x + 1/2*a)^2 + sqrt(-d*tan(1/2*b*x + 1/2*a)^4 + d)))/sqrt(-d) - 16*(5*(sqrt(-d)*
tan(1/2*b*x + 1/2*a)^2 - sqrt(-d*tan(1/2*b*x + 1/2*a)^4 + d))^4 - 10*(sqrt(-d)*tan(1/2*b*x + 1/2*a)^2 - sqrt(-
d*tan(1/2*b*x + 1/2*a)^4 + d))^3*sqrt(-d) - 20*(sqrt(-d)*tan(1/2*b*x + 1/2*a)^2 - sqrt(-d*tan(1/2*b*x + 1/2*a)
^4 + d))^2*d + 10*(sqrt(-d)*tan(1/2*b*x + 1/2*a)^2 - sqrt(-d*tan(1/2*b*x + 1/2*a)^4 + d))*sqrt(-d)*d + 3*d^2)/
(sqrt(-d)*tan(1/2*b*x + 1/2*a)^2 - sqrt(-d*tan(1/2*b*x + 1/2*a)^4 + d) - sqrt(-d))^5)/(b*d^3)

________________________________________________________________________________________

maple [B]  time = 0.32, size = 882, normalized size = 8.82 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(b*x+a)/(d*cos(b*x+a))^(7/2),x)

[Out]

1/10/d^(15/2)/(-d)^(1/2)/(8*sin(1/2*b*x+1/2*a)^6-12*sin(1/2*b*x+1/2*a)^4+6*sin(1/2*b*x+1/2*a)^2-1)*(10*ln(2/co
s(1/2*b*x+1/2*a)*((-d)^(1/2)*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)-d))*d^(9/2)-24*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^
(1/2)*d^(7/2)*(-d)^(1/2)+5*ln(2/(cos(1/2*b*x+1/2*a)+1)*(d^(1/2)*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)-2*d*cos(1/
2*b*x+1/2*a)-d))*(-d)^(1/2)*d^4+5*ln(2/(cos(1/2*b*x+1/2*a)-1)*(d^(1/2)*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)+2*d
*cos(1/2*b*x+1/2*a)-d))*(-d)^(1/2)*d^4-40*(2*ln(2/cos(1/2*b*x+1/2*a)*((-d)^(1/2)*(-2*sin(1/2*b*x+1/2*a)^2*d+d)
^(1/2)-d))*d^(9/2)+ln(2/(cos(1/2*b*x+1/2*a)-1)*(d^(1/2)*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)+2*d*cos(1/2*b*x+1/
2*a)-d))*(-d)^(1/2)*d^4+ln(2/(cos(1/2*b*x+1/2*a)+1)*(d^(1/2)*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)-2*d*cos(1/2*b
*x+1/2*a)-d))*(-d)^(1/2)*d^4)*sin(1/2*b*x+1/2*a)^6+20*(6*ln(2/cos(1/2*b*x+1/2*a)*((-d)^(1/2)*(-2*sin(1/2*b*x+1
/2*a)^2*d+d)^(1/2)-d))*d^(9/2)-4*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)*d^(7/2)*(-d)^(1/2)+3*ln(2/(cos(1/2*b*x+1/
2*a)-1)*(d^(1/2)*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)+2*d*cos(1/2*b*x+1/2*a)-d))*(-d)^(1/2)*d^4+3*ln(2/(cos(1/2
*b*x+1/2*a)+1)*(d^(1/2)*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)-2*d*cos(1/2*b*x+1/2*a)-d))*(-d)^(1/2)*d^4)*sin(1/2
*b*x+1/2*a)^4-10*(6*ln(2/cos(1/2*b*x+1/2*a)*((-d)^(1/2)*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)-d))*d^(9/2)-8*(-2*
sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)*d^(7/2)*(-d)^(1/2)+3*ln(2/(cos(1/2*b*x+1/2*a)-1)*(d^(1/2)*(-2*sin(1/2*b*x+1/2*
a)^2*d+d)^(1/2)+2*d*cos(1/2*b*x+1/2*a)-d))*(-d)^(1/2)*d^4+3*ln(2/(cos(1/2*b*x+1/2*a)+1)*(d^(1/2)*(-2*sin(1/2*b
*x+1/2*a)^2*d+d)^(1/2)-2*d*cos(1/2*b*x+1/2*a)-d))*(-d)^(1/2)*d^4)*sin(1/2*b*x+1/2*a)^2)/b

________________________________________________________________________________________

maxima [A]  time = 0.47, size = 100, normalized size = 1.00 \[ \frac {\frac {10 \, \arctan \left (\frac {\sqrt {d \cos \left (b x + a\right )}}{\sqrt {d}}\right )}{d^{\frac {5}{2}}} + \frac {5 \, \log \left (\frac {\sqrt {d \cos \left (b x + a\right )} - \sqrt {d}}{\sqrt {d \cos \left (b x + a\right )} + \sqrt {d}}\right )}{d^{\frac {5}{2}}} + \frac {4 \, {\left (5 \, d^{2} \cos \left (b x + a\right )^{2} + d^{2}\right )}}{\left (d \cos \left (b x + a\right )\right )^{\frac {5}{2}} d^{2}}}{10 \, b d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)/(d*cos(b*x+a))^(7/2),x, algorithm="maxima")

[Out]

1/10*(10*arctan(sqrt(d*cos(b*x + a))/sqrt(d))/d^(5/2) + 5*log((sqrt(d*cos(b*x + a)) - sqrt(d))/(sqrt(d*cos(b*x
 + a)) + sqrt(d)))/d^(5/2) + 4*(5*d^2*cos(b*x + a)^2 + d^2)/((d*cos(b*x + a))^(5/2)*d^2))/(b*d)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\sin \left (a+b\,x\right )\,{\left (d\,\cos \left (a+b\,x\right )\right )}^{7/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(sin(a + b*x)*(d*cos(a + b*x))^(7/2)),x)

[Out]

int(1/(sin(a + b*x)*(d*cos(a + b*x))^(7/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)/(d*cos(b*x+a))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________